sábado, 20 de junho de 2009

Lunetas e Telescópios


A Astronomia é uma ciência que se dedica ao estudo de todos os corpos e astros celestes. Como uma ciência das mais antigas, de acordo com os registros históricos, ela sofreu muitas evoluções desde a pré-história e hoje praticamente todas as outras ciências são necessárias para o desenvolvimento da Astronomia. Estudando sobre a história das ciências é fácil perceber que a Astronomia influenciou a humanidade durante toda a pré-história e a história conhecida. O conhecimento sobre o céu sempre fez parte da curiosidade humana . Satisfazer essa curiosidade foi um estímulo muito grande para desenvolver outras ciências como a Física e a Matemática. Esse estimulo serve de motivação para que muitas crianças encontrem o caminho do estudo das Ciências Naturais, pois são raras as pessoas que não ficam encantadas quando são estimuladas a observar o céu.

Estudar e aprender Astronomia não é difícil, mas requer um pouco de paciência e observação por isso, este módulo foi projetado para ser lido e estudado com calma. Para melhor entender o seu conteúdo é necessário que você faça as práticas ou atividades propostas, que são simples, interessantes e importantes. Lendo este módulo com calma, acompanhando as observações e nos escrevendo quando tiver dúvidas o seu aproveitamento será muito melhor e você verá como sua curiosidade aumenta para saber mais sobre o céu.

Eis aqui algumas imagens mostrando a evolução da Astronomia, desde o observatório pré-histórico de Stonehange, até o Ônibus Espacial e o telescópio espacial Hubble. Da superfície da Mãe Terra, nós evoluímos e hoje buscamos as nossas respostas a partir do espaço.


Luneta ou Telescópio



São instrumentos que possuem lentes ou espelhos curvos e são capazes de ampliar a imagem de algo que está longe. A palavra luneta tem origem francesa "lunette". Do ponto de vista formal da Óptica os telescópios podem ser: Refratores (Objetiva feita de lentes e Oculares feitas de lentes), Refletores (Objetiva feita de espelhos e Oculares feitas de lentes) e Catadóptricos ( Corretor feito de lente, Objetiva feita de espelho e Oculares feitas de lentes.

A Luneta de Galileu Galilei é composta de uma objetiva com um lente convernte e a ocular com uma lente divergente. Isso pemite ver os objetos ampliados e sem a inversão da imagem. A luneta de Galileu é um telescópio refrator.

Instrumentos posteriores e muito melhores que o de Galileu apresentam a imagem invertida nas duas direçoes vertival e horizontal e outros somente numa das direções. De início, aos observadores menos desavisados parece estranho! Para o astronômo o importante é ter a melhor imagem possível.

Com o surgimento da luneta ou telescópio ocorreu praticamente uma "febre de Astronomia" para observar o céu. Muitas pessoas ficaram encantadas com a beleza do céu, visto através dos telescópios e puseram-se a estudá-lo por causa disso muito mais foi descoberto: as galáxias, as nebulosas, os aglomerados de estrelas, outros planetas como Urano, Netuno e Plutão que não podem ser vistos a olho nu. Muitos astros que observados apenas com os olhos pareciam simples estrelas, com as lunetas se mostraram verdadeiras jóias do céu.

Atualmente, com a facilidade de se produzir equipamentos cada vez mais sofisticados o desafio de estudar o céu continua. Os maiores desafios dos astrônomos dos nossos dias são: saber qual o tamanho do universo; saber como ele funciona; como viajar com segurança pelo espaço e principalmente se existem outros planetas no universo que sejam habitados por formas de vida parecidas com a nossa.

Uma das maiores contribuições da Astronomia nos dias atuais é o grande desenvolvimento tecnológico que ela proporciona. Muitos produtos precisaram e precisam ser desenvolvidos para suprir as necessidades dos astronautas e dos equipamentos para que estes suportem as condições do espaço fora da atmosfera terrestre. Dessa busca por novos produtos foram encontrados muitos outros que são úteis no nosso dia a dia, como o gel de fraudas descartáveis, muitos equipamentos médicos. Os produtos mais comuns que foram desenvolvidos para levar o homem ao espaço são as comidas em conserva. Transportar, conservar e até mesmo comer no espaço sem a gravidade são problemas sérios para os astronautas, por isso que hoje temos alimentos que podem ser guardados por muito tempo sem problemas, comidas secas ou em pasta como as de bebê. Só para levar o homem à Lua mais de 200 mil produtos novos foram desenvolvidos, que de maneira direta ou indireta nos proporciona mais conforto. Pergunte a uma pessoa, que viveu sua infância na década de 60, qual a diferença entre a quantidade de produtos que existem hoje e que existia na sua infância, desde brinquedos, utilidades domésticas, aparelhos médicos e tudo o mais que ela se lembrar.

Durante toda a história conhecida da humanidade a conquista do céu - mesmo sendo intocável - sempre foi um grande desejo humano. Muitas descobertas importantes ocorreram motivadas pelo desejo de entender e desvendar os mistérios do céu. Hoje em dia não prestamos muita atenção no céu por vários motivos: as luzes das cidades, a maior quantidade de divertimento noturno, e até porque não é mais necessário observá-lo para sobreviver, mas aqueles que redescobrem as belezas que o céu contém ficam fascinados e sentem-se encantados. Porém, normalmente esse fascínio cai no esquecimento por falta de motivação e de um conhecimento mais aprofundado que nos permita entender melhor aquilo que estamos vendo. Quando há motivação e existe conhecimento sempre surgem alunos querendo aprender mais.


CURIOSIDADE


Mesmo com pouca tecnologia e muita imaginação o desenvolvimento da ciência chegou a tal ponto que no século III a.C. um estudioso chamado Eratóstenes que era diretor da maior biblioteca de sua época - Biblioteca de Alexandria - conseguiu determinar o tamanho da Terra com erro muito pequeno. A história começou quando ele estava lendo um dos livros da biblioteca que foi escrito por um viajante. No livro, o viajante relatava que na cidade de Siena (atual Assuã) era possível ver o Sol refletido no fundo de um poço ao meio-dia no mês de junho, (figura 2a) ou seja, o Sol estava a pino. Eratóstenes sabia que no mês de junho as colunas em Alexandria (que era ao norte de Siena) produziam uma pequena sombra ao meio-dia, ou seja o Sol não estava a pino. Ele, que era conhecedor de matemática, também sabia que conhecendo o tamanho da coluna e da sombra produzida pela coluna em Alexandria e a distância entre a coluna e o poço era possível determinar o tamanho da curvatura da Terra, considerando que ela fosse uma esfera.

Conta-se que ele pagou a um carroceiro para ir de Alexandria até Siena medindo a distância entre as duas cidades, ou seja, entre a coluna e o poço. A medida foi feita na ida e na volta da viagem. Convertendo a medida dele em quilômetros estima-se a distância entre as duas cidades em 800 Km. O valor que ele obteve para a curvatura da Terra foi próximo de 40.000 Km . Hoje com os modernos equipamentos e satélites de observação da Terra sabe-se que a curvatura da Terra tem aproximadamente 42.300 km, ou seja, o erro cometido foi muito pequeno se considerarmos que na época não haviam bons instrumentos para se fazer essas medidas.

Este foi o raciocínio de Erastóteles. Ele sabia que se a Terra fosse esférica os dois ângulos a seriam iguais. Então ele encontrou a = 7,2 e sabendo que a circunferência da Terra deveria ter 360o ele fez a conta mostrada acima.

Maneira como Esrastóteles viu a sombra em Alexandria e Siena para poder medir a distância até o centro da Terra. Na época ninguém acreditou nele.

sexta-feira, 19 de junho de 2009

Buraco negro


Um buraco negro clássico é um objeto com campo gravitacional tão intenso que a velocidade de escape excede a velocidade da luz (299.792,458 km/s, equivalente a 1.079.252.848,8 km/h). Nem mesmo a luz pode escapar do seu interior, por isso o termo "negro" (cor aparente de um objeto que não emite nem reflete luz, tornando-o de fato invisível). A expressão "buraco negro", para designar tal fenômeno, foi cunhada pela primeira vez em 1968 pelo físico americano John Archibald Wheeler, em um artigo científico histórico chamado The Known and the Unknown, publicado no American Scholar e no American Scientist. O termo "buraco" não tem o sentido usual mas traduz a propriedade de que os eventos em seu interior não são vistos por observadores externos.

Teoricamente, um buraco negro pode ter qualquer tamanho, de microscópico a astronômico (alguns com dias-luz de diâmetro, formados por fusões de vários outros), e com apenas três características: massa, momento angular (spin) e carga elétrica, ou seja, buracos negros com essas três grandezas iguais são indistinguíveis (diz-se por isso que "um buraco negro não tem cabelos"). Uma vez que, depois de formado, o seu tamanho tende para zero, isso implica que a "densidade tenda para infinito".


A percepção espaço-temporal



Os buracos negros, assim como outros objetos cuja atração gravitacional é extrema, retardam o tempo significativamente devido aos efeitos gravitacionais.

As estrelas de nêutrons e buracos negros causam de fato distorção espaço-temporal notável, relacionada com o efeito de lente gravitacional.

As precessões dos corpos celestes orbitando tais corpos, similarmente a precessão do periélio de Mercúrio no nosso sistema solar, são muito mais notáveis e significativas, e envolvem inclusive estrelas de sistemas binários, ou mesmo múltiplos.


A luz e a singularidade



Em simulações no espaço virtual, descobriu-se que próximo a campos massivos ocupando lugares singulares, a atração gravitacional é tão forte que pode fazer parar o movimento oscilatório, no caso da luz enxergada como comprimento de onda, esta literalmente se apaga. No caso da luz enxergada como objeto que possui velocidade de escape esta é atraída de volta à região de onde foi gerada, pois a velocidade de escape deve ser igual à velocidade de propagação, ambas sendo iguais, a luz matéria é atraída de volta. Logo, a radiação sendo atraída de volta, entra em colapso gravitacional, juntamente à massa que a criou, caindo sobre si mesma.

quinta-feira, 18 de junho de 2009




Choque de partículas no LHC deve ocorrer em breve


O esperado choque entre partículas no LHC – sigla para Grande Colisor de Hádrons, o acelerador de partículas criado pelo Laboratório Europeu para a Física Nuclear (Cern) para reproduzir as condições que teriam surgido frações de segundo após o Big Bang -, deve acontecer nos próximos dias, segundo relato de Andre Rabelo dos Anjos, físico brasileiro filiado à Universidade de Wisconsin, nos Estados Unidos, que acompanha de perto o experimento na Suíça. Em entrevista ao Portal Estadão, ele disse que não há uma data fechada para colocar as partículas em rota de colisão e é possível que, caso o experimento continue no bom ritmo atual, o choque aconteça em breve.

Rabelo dos Anjos explicou que os cientistas estão animados com os experimentos feitos no LHC hoje. “Agora eles começam a introduzir o feixe no segundo sentido”, relata Rabelo dos Anjos. No começo da manhã, um primeiro feixe foi colocado no LHC e, após as partículas completarem uma volta na máquina, que tem 27 km, um segundo feixe foi introduzido no sentido oposto.

“Os brasileiros têm participação em vários experimentos”, diz. Rabelo dos Anjos explica que o objetivo do LHC “é desvendar os últimos mistérios da física de partículas”. Segundo ele, os resultados não têm impacto direto na vida das pessoas. No entanto, toda a tecnologia produzida ao redor do experimento terá um impacto grande.

Para ilustrar, o físico comenta a ida do homem à Lua. “Ir à Lua não afeta sua vida diretamente. Mas para o homem ir à Lua foi preciso inventar o cristal liquido e ele sim foi importante para a vida das pessoas”. A tecnologia criada para o experimento pode ser usada para outras áreas.

Piada

Em relação ao medo de algumas pessoas de que o mundo poderia acabar com o início das operações do LHC, o físico afirma que tudo não passa de especulações de quem não conhece detalhes da operação. “A possibilidade disso acontecer é zero. É possível comparar com a probabilidade de você correndo atravessar um muro”. Além disso, ele afirma que os físicos envolvidos no projeto tratam tal especulação como “uma grande piada”.AE

Física nuclear


A Física nuclear estuda as propriedades e o comportamento dos núcleos atômicos e os mecanismos das reações nucleares.

Esta área da ciência teve início a partir da evolução do conceito científico a cerca da estrutura atômica, pois até meados do século XIX acreditáva-se que os átomos eram esferas massiças indestrutíveis e indivisíveis. Esses conceitos estavão de acordo com a teoría atômica de Dalton.

Para extrair um elétron de um átomo, é necessário uma certa quantidade de energia. Da mesma forma, cada núcleo (próton ou nêutron) necessita também de grande quantidade de energia, que é da ordem de milhões de vezes. Por esse motivo, a física nuclear é denominada física de alta energia.

A física nuclear tem como objeto de estudo o núcleo atômico e suas propriedades. Os núcleos possuem propriedades que podem ser classificadas como estáticas (carga, tamanho, forma, massa, energia de ligação, spin, paridade, momentos eletromagnéticos, etc.) e dinâmicas ( radioatividade, estados excitados , reações nucleares,etc.).

Estas propriedades são analisadas através de modelos nucleares que são baseados na mecânica quântica, relatividade e teoria quântica de campos. A descoberta de que os nucleons (protons e neutrons) são na realidade sistemas compostos, redirecionou o interesse dos físicos nucleares para a investigação dos graus de liberdade de quarks e, com isto, atualmente os domínios da pesquisa da física nuclear e da física de partículas se tornaram interligados.

quarta-feira, 17 de junho de 2009

Física moderna


Física Moderna é a denominação dada ao conjunto de teorias surgidas no começo do século XX, principiando com a Mecânica Quântica e a Teoria da Relatividade e as alterações no entendimento científico daí decorrente, bem como todas as teorias posteriores. De fato, destas duas teorias resultaram drásticas alterações no entendimento das noções do espaço, tempo, medida, causalidade, simultaneidade , trajetória e localidade.

A mecânica quântica surgiu inicialmente dos trabalhos de Max Planck e de Einstein. Um dos mais importantes problemas de física não resolvidos no final do séc. XIX, era o da radiação do corpo negro. Planck resolve este problema em 1901 utilizando como hipótese ad hoc que a energia deste não tem um espectro contínuo, mas pelo contrário é discreta, ou em outras palavras quantizada. Einstein utiliza esta mesma hipótese para resolver o problema do efeito fotoeléctrico em 1905. Mas vai mais longe propondo que esta é na realidade a verdadeira natureza da luz. A essa quantidade discreta de luz se chama quantum de luz ou fóton.

Nasce assim a Mecânica Quântica que será posteriormente desenvolvida pelo trabalho de muitos outros cientistas como Niels Bohr, Erwin Schrödinger, Werner Heisenberg, Einstein, Louis de Broglie, Max Born, Wolfgang Pauli ou Paul Dirac, citando apenas os mais importantes.

A hipótese de que a energia é quantizada permite então resolver muitos dos problemas pendentes da Física do ínicio do séc. XX. Einstein utiliza-a para explicar o calor específico dos sólidos e Niels Bohr para explicar a estabilidade do átomo. O primeiro modelo atómico, chamado modelo de Bohr, é posteriormente melhorado por Sommerfeld e outros cientistas acima referidos dando origem à moderna teoria quântica, com uma formalização em moldes mais rigorosos. Tal desenvolvimento também se deu pelos esforços do matemático John von Neumann.

Dentre esses desenvolvimentos, a teoria quântica abandonou parcialmente a noção de trajetória e da localidade, em função do princípio da incerteza de Heisenberg. Assim tem-se a noção da trajetória, de natureza determinista, substituída pela noção de função de onda, de natureza probabilística. Essa interpretação da função de onda, como medida da potencialidade de localização de uma partícula, foi dada pela análise e correta interpretação de Max Born.

Bohr contribui decisivamente também para esse desenvolvimento ulterior da mecânica quântica. Ele e seus seguidores (incluindo Heisenberg) ajudaram a formar a chamada Interpretação de Copenhaga. Nessa interpretação, dá-se a explicação quântica da medida. Uma medida realizada sobre um sistema quântico resulta da interação de um aparelho de medida clássico com um sistema quântico. Como a medida resulta numa certeza sobre um valor de uma grandeza (observável), ao passo que a função de onda representa uma função de probabilidades em termos da posição, significa dizer que o ato de medir implica um colapso da função de onda.

Também em 1905, Einstein publica a teoria da relatividade restrita, nesta a idéia clássica que se tinha da simultaniedade foi abandonada, em decorrência da finitude da velocidade de transmissão das interações electromagnéticas, que resulta da teoria clássica do electromagnetismo de Maxwell. A simultaniedade passa a depender do referencial que se está adotando para se analisar uma dada situação física. É assim, a invariância da velocidade da luz (que corresponde precisamente à velocidade de transmissão das interações) implica que as noções de espaço e tempo se mesclam em um novo conceito, o espaço-tempo. Para a teoria da relatividade restrita contribuiram decisavemente também Henri Poincaré, Hendrik Lorentz e Hermann Minkowski. Assim se encerra de modo consistente a teoria da electrodinâmica clássica. Posteriormente, em 1915, Einstein leva mais longe os conceitos da teoria da relatividade ao generalizar o conceito de finitude da velocidade de transmissão das interações à interação gravitacional. Do desenvolvimento desta ideia resulta a moderna teoria da gravitação, conhecida por teoria da relatividade geral.

É Dirac quem posteriormente formaliza a teoria da Electrodinâmica Quântica que une de modo consistente a teoria quântica e a electrodinâmica clássica, baseando-se em trabalho anterior de Oskar Klein, Walter Gordon e Vladimir Fock. As tentivas de lhes juntar também a teoria da relatividade geral foram até hoje infrutíferas, sendo este um dos maiores problemas em aberto da física moderna.

terça-feira, 16 de junho de 2009

Leis de Newton


As leis de Newton são as leis que descrevem o comportamento de corpos em movimento, formuladas por Isaac Newton.


História;

Isaac Newton
publicou estas leis em 1687, no seu trabalho de três volumes intitulado Philosophiae Naturalis Principia Mathematica. As leis explicavam vários comportamentos relativos ao movimento de objetos físicos.

Newton usando as três leis, combinadas com a lei da gravitação universal, demonstrou as Leis de Kepler, que descreviam o movimento planetário. Essa demonstração foi a maior evidência a favor de sua teoria sobre a gravitação universal.


Formulação original


A Primeira Lei de Newton
, ou Princípio da Inércia é uma das leis da Física.

A partir das ideias de inércia de Galileu, Isaac Newton enunciou a sua Primeira Lei:

"Todo corpo permanece em seu estado de repouso ou de movimento retilíneo e uniforme, a menos que seja obrigado a mudar seu estado por forças a ele impressas."

Esse enunciado também pode ser deduzido da Segunda Lei:

\mathbf{F}= m. \mathbf{a}

Se \mathbf{F} = 0 , existem duas opções: ou a massa do corpo é zero ou sua aceleração. Obviamente como o corpo existe, ele tem massa, logo a sua aceleração é que é zero, e consequentemente, a sua velocidade é constante.

No entanto, o verdadeiro potencial da Primeira Lei evidencia-se quando se envolve o problema dos referenciais:

"Se um corpo está em equilíbrio, isto é, a resultante das forças que agem sobre ele é nula, é possível encontrar ao menos um referencial, denominado inercial, para o qual este corpo está em repouso ou em movimento retilíneo uniforme."

Essa reformulação melhora muito a utilidade da primeira lei de Newton. Para exemplificar tomemos um carro. Enquanto o carro faz uma curva, os passageiros têm a impressão de estarem sendo "jogados" para fora da curva. É o que chamamos de força centrífuga. Se os passageiros possuírem algum conhecimento de Física tentarão explicar o fenômeno com uma força. No entanto, se pararem para refletir, verão que tal força é muito suspeita. Primeiro: ela produz acelerações iguais em corpos de massas diferentes. Segundo: não existe lugar nenhum onde a reação dessa força esteja aplicada, contrariando a 3ª Lei de Newton. Como explicar a misteriosa força?

O erro dos passageiros foi simples: eles não escolheram um referencial inercial. Logo, obviamente as leis de Newton falhariam, pois estas só valem nestes referenciais. Se um referencial inercial fosse escolhido, como um observador do lado de fora do carro, nada de anormal seria visto, apenas os passageiros tentando manter sua trajetória em linha reta e o carro forçando-os a virar. Quem estava sob ação de forças era o carro.

Muitos outros exemplos existem de forças misteriosas que ocorrem por tomarmos referenciais não-inerciais, podemos citar, além da força centrífuga, as forças denominadas de Einstein, e a força de Coriolis.

Então é importante lembrar: A importância da primeira lei de Newton é estabelecer um referencial no qual a segunda lei de Newton seja válida. Tal referencial é denominado de referencial inercial.

Princípio da física (dinâmica) enunciado pela primeira vez por Galileu Galilei e desenvolvido mais tarde por Isaac Newton, que descreve o movimento dos corpos desprezando o efeito do atrito:

"Se um corpo se deslocar em linha reta com uma certa velocidade, continuará indefinidamente em movimento na mesma direção e com a mesma velocidade se nenhuma força agir sobre ele."

O principio da inércia explica o que acontece para que os copos e pratos sobre uma toalha possam continuar sobre a mesa se a toalha for puxada abruptamente. Entendemos que se os pratos copos e talheres estiverem em repouso sobre a mesa, estes vão permanecer eternamente em repouso até que algo aconteça para movê-los de lá. Com o puxão da toalha de maneira correta, não se consegue imprimir força suficiente para que os corpos entrem em movimento, então eles permanecem em seus lugares.

O princípio da inércia nasceu em experiências com bolas metálicas descendo por um plano inclinado, passando depois por uma superfície horizontal e finalmente subindo um outro plano inclinado.

Ao diminuir a inclinação deste último, sucessivamente, Galileu notou que a esfera percorria distâncias cada vez maiores, atingindo quase a mesma altura. Inferiu então que, na ausência de atrito, se a inclinação do último plano fosse nula, ou seja, ele fosse horizontal, a esfera rolaria infinitamente. Dessa forma, mostrou a necessidade de se ir além da experiência, para buscar as leis mais gerais do movimento.


A segunda Lei de Newton (também denominada Lei Fundamental da Mecânica/Dinâmica), é o segundo princípio consiste em que todo corpo em repouso precisa de uma força para se movimentar e todo corpo em movimento precisa de uma força para parar. O corpo adquire a velocidade e sentido de acordo com a força aplicada. Ou seja, quanto mais intensa for a força resultante, maior será a aceleração adquirida pelo corpo.

Quando uma força resultante atua sobre uma partícula, esta adquire uma aceleração na mesma direção e sentido da força, segundo um referencial inercial. Neste caso a relação entre a causa (força resultante) e o efeito (aceleração) constitui o objetivo principal da Segunda Lei de Newton, cujo enunciado pode ser simplificado assim:


Se a força resultante for nula, \vec{F}=0, o corpo estará em repouso (equilíbrio estático) ou em movimento retilíneo uniforme (equilíbrio dinâmico). A força poderá ser medida em Newton se a massa for medida em kg e a aceleração em m/s² pelo Sistema Internacional de Unidades de medidas (S.I).


A Terceira Lei de Newton também é conhecida como Lei do Par Acção-Reação.

Definição

Quando um corpo A exerce uma força sobre um corpo B, simultaneamente o corpo B exerce uma força sobre o corpo A de intensidade e direção igual mas em sentido oposto.

A força que A exerce em B e a correspondente força que B exerce em A constituem o par ação-reação dessa interação de contato (colisão). Essas forças possuem mesma intensidade, mesma direção e sentidos opostos. Ou seja:

Ao aplicarmos a terceira lei de Newton, não podemos esquecer que as forças de ação e reação:

* estão associadas a uma única interação, ou seja, correspondem às forças trocadas entre apenas dois corpos;

* têm sempre a mesma natureza (ambas de contato ou ambas de campo), logo, possuem o mesmo nome (o nome da interação);

* atuam sempre em corpos diferentes, logo, não se anulam.

segunda-feira, 15 de junho de 2009

O Novo Sistema Solar


Em 24/08/2006 a Assembleia Geral da União Astronômica
Internacional estabeleceu uma nova definição de planeta.
A resolução final da União Astronômica Internacional (IAU)
ficou em algo intermediário da proposta inicial, que definia
12 planetas, e da posição mais radical de eliminar Plutão do
grupo de planetas. Eu diria que o sistema solar não perdeu
Plutão mas, sim, ganhou 3 novos planetas anões: o próprio
Plutão, o antigo asteróide Ceres e o novo objeto descoberto
em 2003 UB313 (apelidado provisóriamente de Xena).

-O que define o planeta clássico:
1 - ser esférico por ação de sua própria massa e gravidade;
2 - orbitar uma estrela (no caso o Sol) sem ser ele mesmo uma
estrela;
3 - ser o astro dominante daquela órbita.


Esta últma premissa é que diferencia planetas clássicos de planetas
anões. Se algum novo objeto descoberto compartilhar sua órbita como
outros astros, ele será um planeta anão, caso contrário será um
planeta clássico. Pela dinâmica do sistema solar, se um astro for
suficientemente grande ele vai dominar sua órbita expulsando e/ou
incorporando (engolindo) os demais astros desta região. É o que
aconteceu nos primórdios da formação do sistema solar com todos os
planetas clássicos. Bem no início havia um enxame de pequenas rochas
e poeira formando um disco ao redor do Sol. A medida que o sistema
solar evoluia, começaram a se formar aglomerados maiores que
enguliam os pequenos da sua órbita, até que um dia todos os detritos
da região foram ou engolidos ou varridos. Isso aconteceu com os 8
planetas clássicos. Mas na região dos asteróides, por influência
gravitacional de Júpiter, os detritos não consegiram se aglutinar
para formar um novo planeta. Ceres foi apenas o maior aglomerado que
se formou e por sua própria gravidade assumiu a forma esférica
(ainda estamos por investigar Vesta, Hypatia e outros asteróides que
podem ou não ser esféricos). Com Plutão aconteceu algo parecido, os
detritos da formação do sistema solar foram varridos para fora (se
não me engano por Urano e depois Netuno) e se formou uma região
conhecida com cinturão de Kuiper. Plutão é apenas mais um destes
objetos (KBO) entre muitos outros mas como assumiu a forma esférica
mereceu a designação de planeta anão (com muita honra, hehehe).
Agora estamos descobrindo outros KBOs que provavelmente são
esféricos e todos cairão na categoria de planetas anões. Acho muito
difícil que exista uma região no cinturão de Kuiper que tenha sido
varrida e onde reine um novo planeta na acepção clássica. Mas nada é
impossível, só o tempo dirá.


Mas lembrem-se que no fundo nada mudou, todos os planetas,
anões e asteróides continuam nas suas órbitas placidamente,
foi apenas a classificação do que é planeta que mudou.

domingo, 14 de junho de 2009

Astrofísica


À Astrofísica é o ramo da Astronomia que lida com a Física do Universo, incluindo suas propriedades físicas (luminosidade, densidade, temperatura, composição química) de objetos astronômicos como estrelas, galáxias e meio interestelar, e também das suas interações. Na prática, todas as pesquisas astronômicas modernas envolvem uma quantia substancial da Física teórica e experimentos práticos.

A Astrofísica não deve ser confundida com a Cosmologia, esta se ocupa da estrutura geral do universo e das leis que o regem num sentido mais amplo, embora sob muitos aspectos ambas seguem um caminho paralelo, algumas vezes considerado redundante.

Perguntas da humanidade sobre a natureza do Cosmo

Qual é a idade do universo e das estrelas que o compõe? Sua composição? Como sabemos se as estrelas estão consumindo seu combustível e a que velocidade? O efeito da gravidade pode desviar a luz e distorcer o espaço?



Como a Astrofísica procura responder


Fazendo-se uma análise espectrográfica através do espectrofotômetro de absorção atômica temos como verificar se um astro está se movendo, em que direção e velocidade. Podemos saber se existe um desvio da luz causado pela gravidade de algum corpo próximo, a composição das estrelas e dos gases que estão dispersos, entre estas e o instrumento que faz a medição. Sempre quando verificamos o espectro de uma estrela, observamos que suas linhas espectrais desviam para o vermelho. Isto se dá, porque ela está se afastando, ao contrário, se estiver se aproximando, o desvio será para o azul. As falhas devido à absorção atômica indicam sua composição. A distância entre linhas espectrais indica vários parâmetros, inclusive a presença de gases e poeira entre a estrela e a Terra.

Outros exemplos de instrumentos usados em astrofísica são os aceleradores de partículas, entre outros equipamentos, estes podem determinar a composição inicial de nosso universo e o comportamento das partículas elementares ao nível de microcosmo.

O telescópio óptico, o radiotelescópio, entre outros, também são exemplos do uso de instrumentação física experimental para a análise e dedução de parâmetros de corpos estelares.


Abóbada celeste



Acredita-se que os primeiros filósofos da Antigüidade clássica foram os precurssores da astrofísica desenvolvendo novos conceitos e estabelecendo as primeiras regras para nortear a pesquisa racional do Universo.

Tales de Mileto foi fundador da escola de Mileto. Já naquela época imaginava que o céu era uma abóbada e esta estaria dividida em cinco círculos, o ártico, trópico de verão, o equador, o trópico de inverno e finalmente o antártico. Explicou o eclipse do Sol e que a Lua é por ele iluminada.

Anaximandro de Mileto, utilizou as proporções matemáticas e geométricas para tentar mapear a abóbada celeste, elaborou tratados sobre astronomia, cosmologia e geografia.

O conceito de abóbada celeste e o estabelecimento de um sistema de coordenadas de espaço foi uma descoberta importante que levou à astronomia esférica ou astronomia de posição, assim, as posições dos astros puderam ser determinadas e catalogadas racionalmente.

Este processo de catalogação é executado até a atualidade e continuará a ser usado, acredita-se por muito tempo.